Math 5C Discussion Problems 4

Laplace's Equation

1. Starting from scratch, use separation of variables to solve the following problem. Define $f(y)=\sin y$ and let S be the square $0 \leq x, y \leq \pi$ in \mathbb{R}^{2}. Find a function u which is harmonic inside S, equal to $f(y)$ on the right edge of the square, and equal to zero on the other three sides.
2. Freely using the formulas we derived, redo the previous problem assuming:
(a) $f(y)=1$.
(b) $f(y)=y$.
(c) $f(y)=\sin y$.
3. Assume R is the unbounded region in first quadrant in \mathbb{R}^{2} given by $0 \leq y \leq \pi$ and that u is harmonic on R. Suppose that $u(x, y) \rightarrow 0$ as $x \rightarrow \infty, u(0, y)=1$ for all y, and that $u(x, 0)=u(x, \pi)=0$ for all x. Use separation of variables to find a formula for u.

Integration Revisted

1. Evaluate the following. Consider using series.
(a) $\int_{0}^{\infty} \ln \left(1-e^{-x}\right) d x$
(b) $\int_{0}^{\infty} x\left[\ln \left(e^{x}-1\right)-x\right] d x$
(c) $\int_{0}^{1} \frac{\ln x}{1-x} d x$
(d) $\int_{0}^{1} \frac{\ln x}{1-x^{2}} d x$
(e) $\int_{0}^{1} x^{2} \frac{\ln x}{1-x} d x$
(f) $\int_{0}^{1} \ln x \ln (1-x) d x$
(g) $\int_{0}^{\infty} \frac{x}{e^{x}-1} d x$
2. Evaluate the following. Try substitutions to relate to known integrals.
(a) $\int_{0}^{\infty} x^{-1 / 2} e^{-x} d x$
(b) $\int_{0}^{\infty} e^{-\left(x^{2}+x+1\right)} d x$
(c) $\int_{0}^{\infty} x e^{-x^{4}} d x$
3. Evaluate the following. Consider double integrals.
(a) $\int_{0}^{\infty} \frac{e^{-x}-e^{-2 x}}{x} d x$
(b) $\int_{0}^{\infty} \frac{\arctan \pi x-\arctan x}{x} d x$
4. Evaluate the following. Consider differentiation with respect to a.
(a) Use $I(a)=\int_{0}^{2 \pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta$ to find $\int_{0}^{2 \pi} e^{\cos \theta} \cos (\sin \theta) d \theta$.
(b) Use $I(a)=\int_{0}^{\infty} e^{-a x} \frac{\sin x}{x} d x$ to find $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
(c) Use $I(a)=\int_{0}^{1} \frac{x^{a}-1}{\ln x} d x$ to find $\int_{0}^{1} \frac{x-1}{\ln x} d x$.
5. Use clever substitutions to evaluate the following.
(a) $\int_{0}^{\pi / 2} \ln \tan x d x \quad(\operatorname{try} u=\pi / 2-x)$
(b) $\int_{0}^{\infty}\left(x+\frac{1}{x}\right)^{-2} \frac{\ln x}{x} d x \quad(\operatorname{try} u=1 / x)$

Silly Logic Problems

Want more practice for those inevitable bonus questions?

1. A king of a distant land tests his criminals before jailing them. He presents each one with a collection of identical doors, one of which leads to freedom, while the others lead to imprisonment. Each door is labelled with a sign, upon which is written a single statement. This statement, however, could be either true or false.
(a) The first prisoner encounters two doors; the king says that the statements are either both true or both false. The doors read:
i. Freedom is behind one of these doors.
ii. Prison is behind the other door.

Which should the prisoner pick?
(b) The second prisoner encounters two doors; the king says that the statements are either both true or both false. The doors read:
i. Either prison is behind this door or freedom is behind the other door.
ii. Freedom is behind the other door.

Which should the prisoner pick?
(c) The third prisoner encounters three doors; the kings says that at most one statement is true. The doors read:
i. Prison is behind this door.
ii. Freedom is behind this door.
iii. Prison is behind door 2.

Which should the prisoner pick?
2. (Multiple choice question) The following is a list of consistent statements, each either true or false. What is the answer to this question?
(a) A is the answer if and only if C is false.
(b) B is the answer if and only if B is false.
(c) Both D and E are true.
(d) If C is false then D is false.
(e) Both A and B are false.
3. Of the following 100 (logically consistent) statements, which are true and which are false?

- The next statement is false.
- The next statement is false.
\vdots
- The next statement is false.
- The number of false statements is even.

4. There are three doors, labelled A, B, and C. There are three signs that are to be placed on the doors; in no particular order, the signs read:

- The statement on door A is false.
- The statement on door B is false.
- The statement on door C is false.

If the signs are randomly placed on the doors (one sign per door), what is the probability that the resulting set of statements is logically consistent?

